Author Affiliations
Abstract
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712, Korea
Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers, where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.
electron beam loading GeV-level electron beam acceleration laser plasma (wakefield) accelerators petawatt-class lasers propagation of relativistic laser pulses in plasma 
High Power Laser Science and Engineering
2015, 3(1): 01000e10
Author Affiliations
Abstract
Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712, Republic of Korea
Recently, intense research into laser plasma accelerators has achieved great progress in the production of high-energy, high-quality electron beams with GeV-level energies in a cm-scale plasma. These electron beams open the door for broad applications in fundamental, medical, and industrial sciences. Here we present conceptual designs of an extreme ultraviolet radiation source for next-generation lithography and a laser Compton Gamma-beam source for nuclear physics research on a table-top scale.
high peak high average power lasers laser wakefield accelerators 
High Power Laser Science and Engineering
2014, 2(4): 04000e31
Author Affiliations
Abstract
In this letter, we discuss the increase in the average cluster size by lowering the stagnation temperature of the methane (CH4) gas. The Coulomb explosion experiments are conducted to estimate the cluster size and the size distribution. The average CH4 cluster sizes Nav of 6 230 and 6 580 are acquired with the source conditions of 30 bars at 240 K and 60 bars at 296 K, respectively. Empirical estimation suggests a five-fold increase in the average size of the CH4 clusters at 240 K compared with that at room temperature under a backing pressure of 30 bars. A strong nonlinear Hagena parameter relation (\Gamma *\propto T^{-3.3}) for the CH4 clusters is revealed. The results may be favorable for the production of large-sized clusters by using gases at low temperature and high back pressures.
020.2649 Strong field laser physics 350.5400 Plasmas 
Chinese Optics Letters
2013, 11(s2): S20201
Author Affiliations
Abstract
We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-kJ, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne \approx 7 \times 10^{15} cm^{ 3} with a channel depth \Delta n/ne=20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 \geq 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a 1\pi-mm-mradlevel transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0=4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.
350.4990 Particles 350.5400 Plasmas 
Chinese Optics Letters
2013, 11(1): 013501
Author Affiliations
Abstract
1 Advanced Photon Research Center, Japan Atomic Energy Agency, Kyoto 619-0215, Japan
2 Department of Accelerator Science, The Graduate University for Advanced Studies, Oho, Tsukuba, Ibaraki 305-0801, Japan
3 Department of Advanced Sciences, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan
4 High Energy Accelerator Research Organization, 1-1 Oho, Ibaraki 305-0801, Japan
5 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900
6 Accelerator Laboratory, Tsinghua University, Beijing 100080
Experiments for the laser guiding have been carried out with the 30-fs, 100-TW Ti:sapphier laser pulse interaction with a long slab (1.2*10 (mm)) and discharged capillary of underdense plasma. Formation of an extremely long plasma channel with its length (~10 mm) 10 times above the Rayleigh length is observed when the laser pulse power is much higher than the critical power for relativistic self-focusing. The long self-guiding channel formation is accompanied by the quasi-monoenergetic electron acceleration with a low transverse emittance (<0.8'pi' mm.mrad) and high electric current (up to ~10 nC/shot). In order to continuously elongate the plasma channel, a 4-cm-scale discharged capillary was used. We successfully demonstrated the laser-plasma acceleration of high-quality electron beams up to near GeV. Our results exactly verify the prediction of laser-wakefield acceleration through a centimeter-scale plasma channel in the "blowout bubble" regime, where a micro-scale plasma cavity produced through the ultra-relativistic laser-plasma interactions plays an essential role in the self-injection and acceleration of electrons.
350.5400 Plasmas 290.5910 Scattering, stimulated Raman 270.6620 Strong-field processes 190.5530 Pulse propagation and temporal solitons 
Chinese Optics Letters
2007, 5(s1): 133

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!